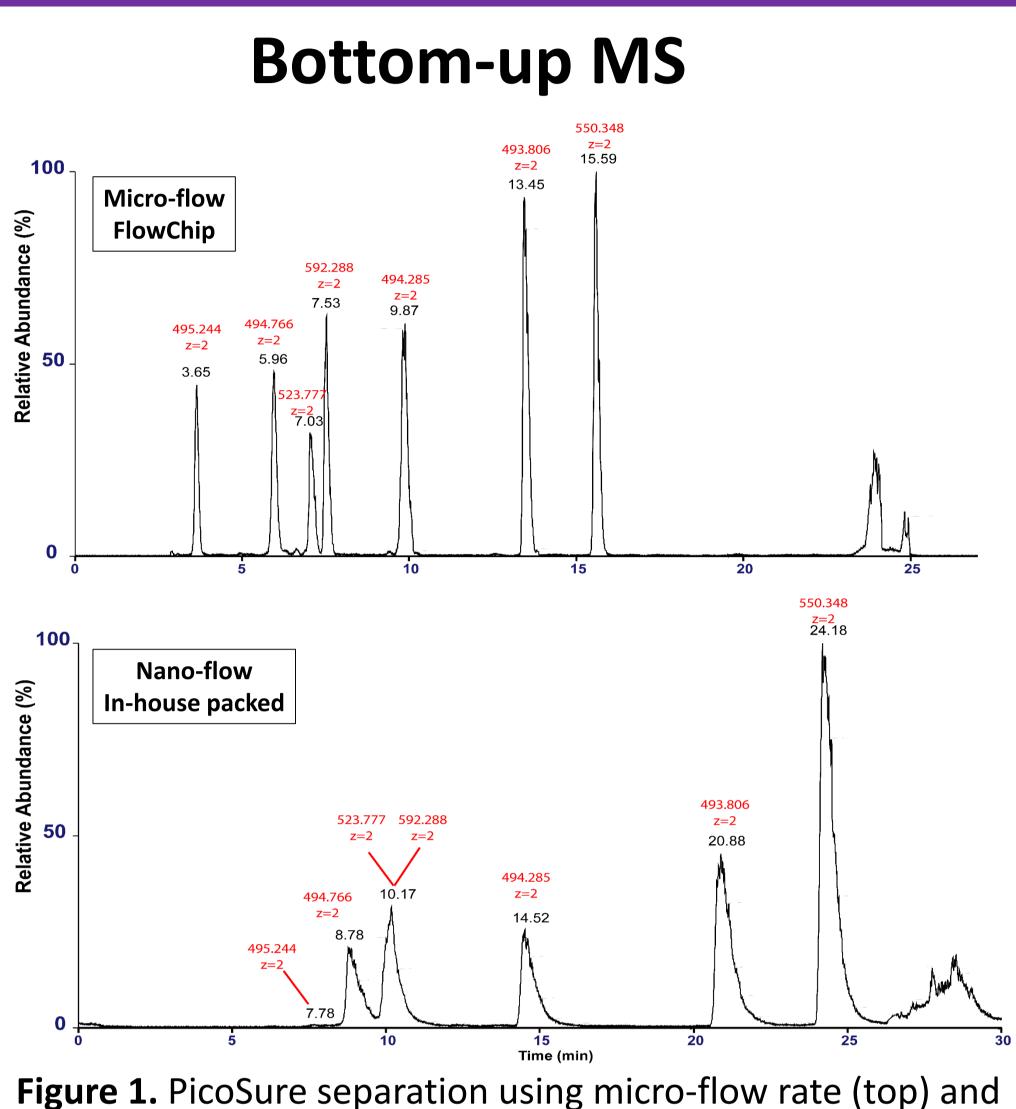
Robust Microflow LC-MS/MS Applied to Bottom-up, Middle-down, and Top-down Proteomics.

¹Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University; Evanston, IL, US. ²New Objective Inc.


Overview

Goal: Comparison of performance evaluation between FlowChips (micro-flow rate) and inhouse packed columns (nano-flow rate) for the separation of peptides and intact proteins.

Methods: PicoSure, BSA, and digested Hela lysate were used for bottom-up cell proteomics. Digested and reduced SiLu antibody for middle-down proteomics. Topdown standards, Hela cell lysate, and intact histones for top-down proteomics. Samples were analyzed on a Dionex Ultimate 3000 using an in-house packed (PLRP-S or C-18) column system (75 µm x 10 cm) or FlowChip columns (C18 or C4, 150 μm x 10 cm) at a flow rate of 0.3 and 1.5 μ L/min, respectively. The LC system was coupled to an Orbitrap Eclipse mass spectrometer. MS parameters were adjusted according to the sample being analyzed, and each sample was analyzed in triplicate. Performance evaluation included monitoring of retention time and the selectivity. Peptide, and protein/proteoform identification were searched using Mascot and TDPortal respectively.

Key points:

- Standardization of retention time: accurate quantification of select proteins in complex samples from LC-MS runs is critical for advances in biomarker`s discovery.
- Nano-flow liquid chromatography (nLC) is the method of choice for MS-based proteomics. Low flow rates improve ionization and sensitivity but becomes challenging due to its propensity to clogging and lack of reproducibility.
- Micro-flow liquid chromatography (mLC) is fundamentally more straightforward to work and more robust than nLC, showing excellent reproducibility.
- We demonstrate the application of mLC for the analysis of peptides, intact proteins, and antibodies using the state of art of LC-MS/MS.

nano-flow rate (bottom).

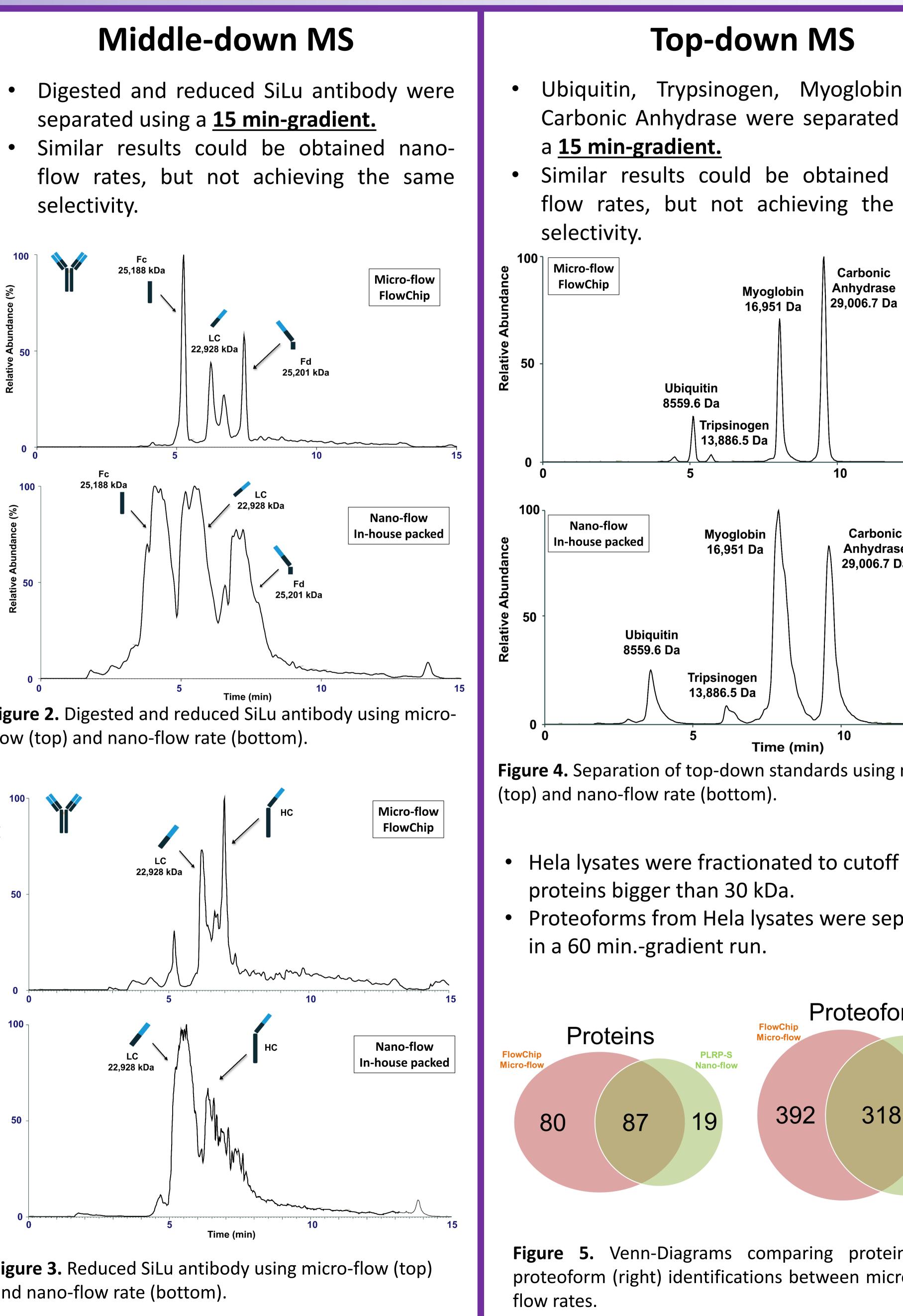
Table 1. Comparison between peptide and protein coverage
 at different flow rates.

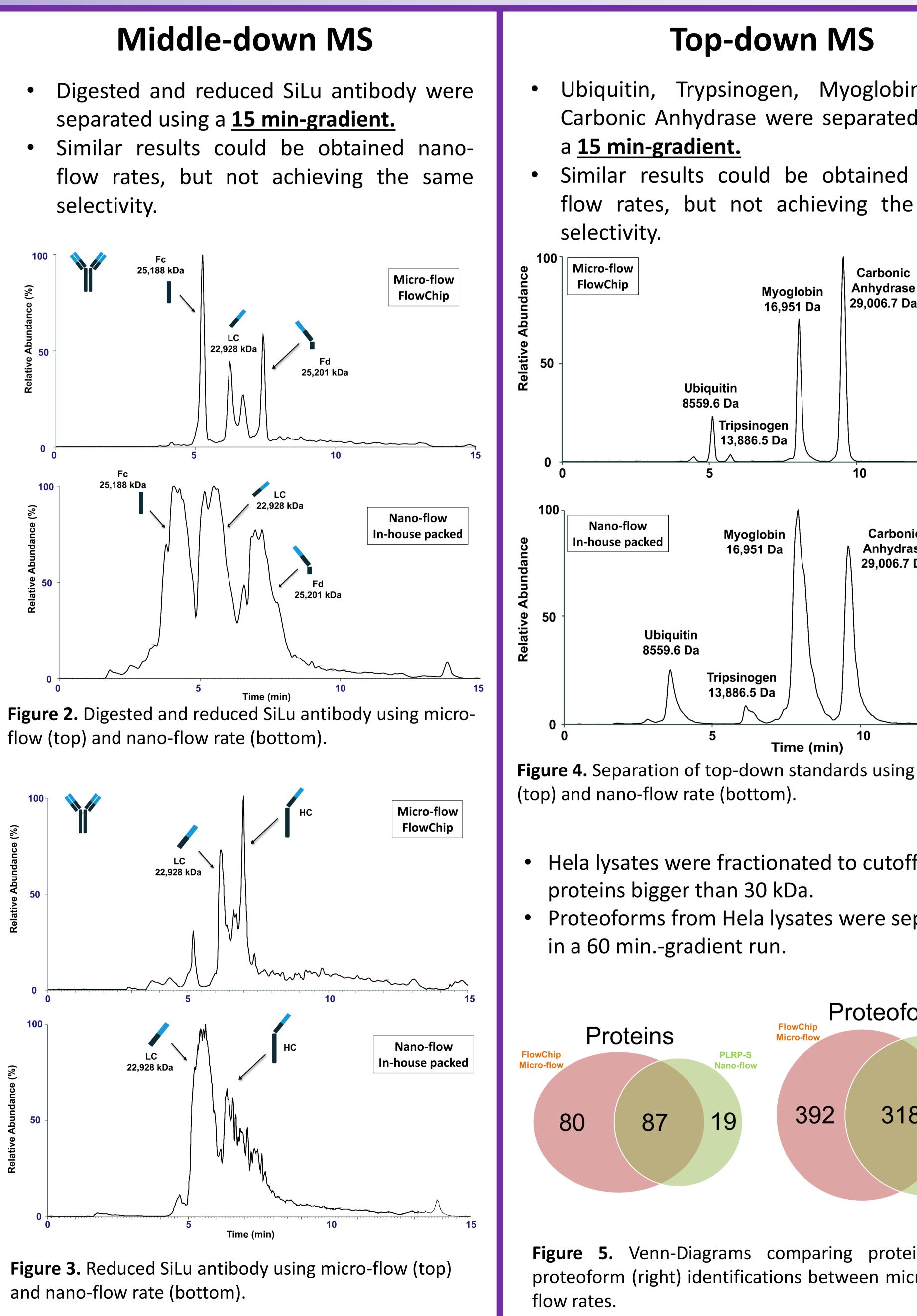
Micro-flow FlowChip 1.5 μL/min Nano-flow 0.3 μL/min

Table 2. Comparison between proteoform and protein coverage at different flow rates.

	Pro
Micro-flow FlowChip 1.5 μL/min	
Nano-flow 0.3 µL/min	

Peptides from BSA digests were separated in a 60 min.-gradient run. Protein coverage between micro and nanoflow rates were comparable and higher than 75%.


Peptides from Hela digests were separated in a 90 min.-gradient run and indicates an increase in the detection of unique peptides for mLC.


BSA		Hela	
Peptide IDs	Protein Coverage (%)	Peptide IDs	Protein IDs
333	86.3	9,412	1,507
213	80.7	7,687	1,715

Histone	S
otein IDs	Proteoform IDs
49	464
60	416

- Intact histones were separated in 60 min.gradient run.
- Micro and nano-flow rates show comparable results.

- selectivity.

Fernanda Negrão¹; Mike Lee², Jeannie M. Camarillo¹; Helena Svobodova², Gary Valaskovic², Amanda Berg², Emily Ehrenfeld², Neil L. Kelleher¹ and Rafael D. Melani¹.

NORTHWESTERN UNIVERSITY

Table 3. Comparison between protein and proteoform coverage at different flow rates.						
n and d using	Hela lysate Protein IDs Proteoform IDs					
nano- e same	Micro-flow FlowChip 1.5 μL/min	143	657			
	Nano-flow 0.3 μL/min	92	724			
	 Proteins from Hela cell lysate were separated in a 90 mingradient run. Micro and nano-flow rates show comparable results. Protein and proteoform were search using TDPortal. 					
15	Conclusions					
nic ase Da	Micro-flow liquid chromatography reveals high- performance in separation and excellent reproducibility for the analysis of peptides, intact proteins, and antibodies:					
	 Better protein coverage of BSA lysate. 					
15 g micro-flow	 Increase in detection of unique peptides of Hela lysates. 					
ff	 High selectivity for the separation of LC, Fd and Fc of digested and reduced SiLu antibody. 					
eparated	 High selectivity for the separation of light chain and heavy chain of reduced SiLu antibody. 					
Orms PLRP-S Nano-flow	 Better peak shape and resolution of top-down standard proteins. 					
8 410	 Protein and proteoform coverage is comparable to those obtained at nano-flow rate for Hela lysates. 					
	Acknowledgments					
ein (left) and cro- and nano-	This work was supported by the National Institutes of Health grant P41 GM108569 (NLK) and New Objective.					